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The evaporating meniscus in a channel
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We consider the evaporating meniscus of a perfectly wetting liquid in a channel
whose superheated walls are at common temperature. Heat flows by pure conduction
from the walls to the phase interface; there, evaporation induces a small-scale liquid
flow concentrated near the contact lines. Liquid is continually fed to the channel, so
that the interface is stationary, but distorted by the pressure differences caused by
the small-scale flow. To determine the heat flow, we make a systematic analysis of
this free-boundary problem in the limit of vanishing capillary number based on the
velocity of the induced flow. Because surface tension is then large, the induced flow
can distort the phase interface only in a small inner region near the contact lines;
the effect is to create an apparent contact angle Θ depending on capillary number.
Though, in general, there can be significant heat flow within that small inner region,
the presence of an additional small parameter in the problem implies that, in practice,
heat flow is significant only within the large outer region where the interface shape is
determined by hydrostatics and Θ . We derive a formula for the heat flow, and show
that the channel geometry affects the heat flow only through the value of the interface
curvature at the contact line. Consequently, the heat flow relation for a channel can
be applied to other geometries.

1. Introduction
The problem of the evaporating meniscus in a channel occurs in discussions of

micro heat pipes, and steady vapour bubbles in channels (Ha & Peterson 1998;
Ajaev & Homsy 2001). In both cases, the evaporation rate is controlled by large
temperature gradients near the apparent contact line, and so the thermal field is
nearly two-dimensional within each section normal to that line. In steady state, the
interface is stationary relative to the wall, so there is no velocity singularity due to a
moving contact line. However, there is potentially a thermal singularity. If the solid
were isothermal, and the interface temperature equalled the saturation temperature
To at which the phases coexist at common pressure, the boundary temperature for
the liquid would be discontinuous at the contact line. Two mechanisms smooth that
discontinuity.

First, because the liquid is chosen to be perfectly wetting in these applications, the
part of the solid seeming unwetted to the eye is actually coated by a uniform film,
typically a few tens of molecules thick. That wetting film exists because the solid
attracts the liquid by van der Waals forces more strongly than it does the vapour. As
a result, the phase interface turns parallel to the wall on approaching it. Further, the
strong attraction between solid and liquid allows liquid within the film to coexist with
its vapour outside, even though the wall temperature Tw exceeds To. Wetting physics
thus removes the thermal singularity by introducing a minimum film thickness Hs ,
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and by allowing the interface temperature to vary smoothly from Tw to To. Secondly,
the interface temperature must exceed To to drive evaporation, and must therefore
vary with position because the evaporation rate decreases with distance from the
contact region. By allowing the interface temperature to vary, evaporation kinetics
relax the singularity.

Because the interface in the contact region is distorted by the induced liquid
flow, the domain for conduction heat transfer is shaped by a liquid flow whose
strength depends on the evaporation rate. The accepted nonlinear theory of the
stationary, perfectly wetting, evaporating meniscus therefore couples wetting physics
to evaporation kinetics, thin film heat conduction and lubrication theory (Potash &
Wayner 1972; Moosman & Homsy 1980). The resulting free-boundary problem
contains three parameters. One of these, here denoted by ε, is the ratio of the
large-scale curvature to the characteristic curvature in the small region where the
large-scale interface joins the flat wetting film. Existing analysis (Morris 2001) shows
that although the static contact angle vanishes for a perfectly wetting system, an
apparent contact angle exists in the limit ε → 0. This angle Θ is a property of the
small-scale induced flow; it is determined chiefly by the capillary number based on
the characteristic velocity of that flow, and vanishes with capillary number. Because
the nonlinear theory is based on the assumption of vanishing interface slope, it holds
only if the capillary number is small, as was first pointed out in Morris (2001, p. 18).

To find the heat flow, Stephan & Busse (1992) and Schonberg, Dasgupta & Wayner
(1995) informally use the separation of scales allowing the existence of Θ . Those
authors divide the meniscus at an arbitrarily chosen point. In a small region near
the apparent contact line, the nonlinear theory is used to find Θ , and the local heat
flow. Outside that contact region, the induced flow is assumed too weak to distort the
interface, whose shape is thus determined by Θ and hydrostatics; the capillary number
of the induced flow is thus implicitly taken as small. The outer heat flow is found
by solving the conduction equation subject to a simplified interfacial condition on T .
That method is informal, as different simplifications are used without explanation.
Despite those simplifications, the heat flow across the wall is not found explicitly as
a function of superheat; both the inner and outer contributions are computed, and
the outer heat flow is a functional of large-scale geometry.

Here, we make a systematic analysis of the free-boundary problem in the limit of
vanishing capillary number for a channel whose superheated walls are at common
uniform temperature. We derive a formula giving the heat flow q∗ per unit width
across one wall, and we show that the same formula can be used to find the heat
flow per unit length of contact line for any geometry in which the interface curves
away from the wall, as in a channel. We then specialize our analysis to the case in
which the wetting film thickness Hs (defined precisely by equation (15)), evaporative
heat transfer coefficient h (defined by equation (1)), and liquid conductivity K satisfy
β = hHs/K → 0; that limit of vanishing micro scale Biot number β is common in
applications. By combining existing theory given in Morris (2001) with our new heat
flow relation, we prove that for β → 0, the dimensionless heat flow q∗/K(Tw − To) is
uniquely determined by Θ , and the macro scale Biot number defined in terms of the
gap thickness 2a by B = ha/K .

At this point, we will have used the free-boundary problem to show that, in practice,
the heat flow is determined by purely macroscopic variables, rather than by the
microphysics included in that model to resolve the thermal contact line singularity.
However, because the resulting heat flow relation involves only phenomenological
variables, its derivation should be possible without invoking microphysics.
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Figure 1. Definition sketch.

We use existing theory to obtain such a derivation. In Morris (2000, § 2), self-
consistency arguments are used to derive conditions under which there is negligible
heat flow at the scale on which the contact angle is established. Those arguments result
in a set of three conditions on Θ (treated as a parameter), material properties and
the superheat. When these conditions hold, the heat flow can be found by solving the
conduction equation for the domain bounded by a circular arc with contact angle Θ;
on that arc, Newton’s law of cooling holds with a predicted heat transfer coefficient.
Because the derivation uses only self-consistency arguments, and is independent of
microphysics, this conduction model can be used for finite Θ , even if the system
is partially wetting. For the special case of a perfectly wetting system, it is shown
in Morris (2001, p. 27) that the self-consistency conditions on Θ are equivalent to
the single condition of vanishing micro scale Biot number β . The conduction model
and the nonlinear theory thus have a common region of validity, namely for those
perfectly wetting systems in which both β and Θ are small.

In § 2, we use the conduction model to find the heat flow for large B, and arbitrary
Θ � π/2. (In practice, B ranges from 40 to about 105. The limits B → ∞ and
β → 0 are consistent because the wetting film thickness Hs is small compared with
the channel thickness 2a.) We verify our general results for large B against an
exact solution of the conduction model for Θ = π/2. In § 3, we analyse the free-
boundary problem, and in § 4 we prove that the formulae derived from the two
models are asymptotically identical in their common range of validity. In § 5, we
give numerical examples showing that the two models agree for parameter values
usual in applications, and we show that our predictions agree with the simulation by
Schonberg et al. (1995). In § 6, we summarize the picture of the evaporating meniscus
developed in these papers.

2. Heat flow predicted by the conduction model
Figure 1 shows the evaporating meniscus in a channel of gap thickness 2a. The

phase interface separates the liquid from its pure vapour phase, which is at uniform
pressure Po. The uniform wall temperature Tw = To + �T , where To is the saturation
temperature at pressure Po, and �T is the superheat. The (large-scale) phase interface
is a circular arc with contact angle Θ . The arc CP is the osculating parabola at
C, i.e. the parabolic arc with the same contact angle and curvature as the actual
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interface. (At B there is a separate osculating parabola, not shown in the figure.)
Liquid of conductivity K fills the region D to the right of the interface. The latent
heat of evaporation is Q. Within the vapour, the sound speed, density and specific
heat ratio are, respectively, c, ρv and γ ; also λ =

√
2γ /π. Material properties are

taken as uniform.
In Morris (2000, § 2), the kinetic equation and interfacial energy balance are

simplified by using scaling to show that, in practice, Newton’s law of cooling holds
on the interface at scales where there is significant heat flow. That is

K∂T∗/∂n∗ + h(T∗ − To) = 0, h = λρvQ
2/(c To) (1a, b)

is the evaporative heat transfer coefficient (Cammenga 1980, p. 495), T∗ is the
dimensional temperature and n∗ is normal distance into the vapour. The following
must be true for (1) to hold. (i) All heat conducted from the wall to the interface
must be absorbed there as latent heat of vaporization. (ii) The evaporation rate at a
point on the interface must be independent of the local liquid pressure, so that the
Kelvin effect is negligible. (iii) The vapour must be dynamically passive. Examples in
Morris (2000, table 1) show that these conditions commonly hold at the scale where
there is significant heat flow.

We also assume that pressure variations due to the induced flow are too small to
distort the interface at the scale where heat flow occurs. In Morris (2000, p. 64), this
is shown to be a good approximation if Ca � Θ4; that condition holds in practice,
and for a perfectly wetting system, it is shown in Morris (2001, p. 18) to be valid
in the limit β → 0. We stress that, at the scale where heat flow occurs, the pressure
variations at issue occur within the thin film, not within the half space occupied by
vapour.

We define dimensionless variables (without asterisks) by T = (T∗ − To)/�T and
(x, y) = (x∗, y∗)/a. The governing equations are

∇2T = 0 within D, on |y| = 1, T = 1; (2a, b)

on x2 + 2x tan Θ + y2 = 1, (x + tanΘ)
∂T

∂x
+ y

∂T

∂y
= B T secΘ. (2c, d)

Throughout this work, ∇2 = ∂2/∂x2+∂2/∂y2, the macro scale Biot number B = ha/K ,
and the heat flow per unit width across one wall q = q∗/K�T . In (2a), we assume
heat flow by pure conduction; this is a good approximation if the Péclet number based
on the volumetric evaporation rate and thermal diffusivity is small, as is usually so.

To find q for large B, we let x1 be a small fixed positive number, and write

q = qi + qo, qi = −
∫ x1

0

∂T

∂y

∣∣∣∣
y=−1

dx, qo = −
∫ ∞

x1

∂T

∂y

∣∣∣∣
y=−1

dx, (2e)

without approximation. We will prove that because x1 is fixed, for B → ∞ the outer
heat flow qo can be found by setting the interface temperature equal to the constant
saturation temperature. However, very near the contact line, T must be allowed to
vary along the interface, for otherwise the flux is non-integrable at the contact line.
Within that small contact region, other simplifications are possible and allow the
inner heat flow qi to be found explicitly. In addition to this inner and outer spatial
structure in T (x, y), the function q(Θ) has itself an inner and outer structure in Θ , as
we now show.
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2.1. Outer solution for the function q(Θ): B → ∞ with fixed Θ �= 0

The outer (spatial) limit is B → ∞ with (x, y) fixed, and not at the contact lines. In
this limit, (2) becomes

∇2T = 0 within D, on |y| = 1, T = 1; (3a, b)

on x2 + 2x tan Θ + y2 = 1, T = 0. (3c, d)

This problem describes conduction heat flow from the isothermal channel walls to a
circular arc on which the dimensional temperature equals the saturation temperature.

In Appendix B, we solve (3) by conformal mapping, and show that with error o(1)
in the small quantity x1, the outer heat flow qo across the wall between x1 and ∞ is
given by

Θqo = − ln
x1

2Θ
− 2 ln

[√
π

Γ (1 + Θ/π)

Γ
(

1
2

+ Θ/π
)]

, (4)

where Γ (z) denotes the usual gamma function. The logarithm occurs in (4) because
the boundary temperature is discontinuous at the contact line by (3b) and (3d), and
the film thickness vanishes linearly near the contact line. Together these effects give a
flux ∼ x−1

1 , so that the heat flow (integrated flux) varies as − ln x1.
The flux singularity makes it inconsistent to use the simplified interfacial condition

(3d) too near the contact line. For the lower contact line in figure 1, the size of that
inner region is found by balancing terms in (2d) to show that 1 + y ∼ 1/B and
x ∼ 1/B.

We therefore define inner variables by x̂ = B x, ŷ = B(1+y), and define the inner
limit as B → ∞ with (x̂, ŷ) fixed. In that limit, (2) becomes

∂2T

∂x̂2
+

∂2T

∂ŷ2
= 0 within D, on ŷ = 0, T = 1; (5a, b)

on ŷ = x̂ tan Θ, sin Θ
∂T

∂x̂
− cos Θ

∂T

∂ŷ
= T . (5c, d)

This problem describes conduction heat flow from an isothermal wall across a liquid
wedge to a linear interface on which Newton’s law of cooling holds. The interface is
linear in this small region because the film is now thin compared with the interfacial
radius of curvature. In (5), Θ is independent of B, but may be small.

There is no elementary solution of (5) for arbitrary Θ , but in Morris (2000,
Appendix A) a regular perturbation expansion in Θ is used to show that the inner
heat flow qi across the wall between x = 0 and x1 is given by

Θqi = ln(BΘx1) + 1
18

Θ2
(
1 − 7

150
Θ2

)
+ O(Θ6). (6)

Figure 4 of Morris (2000) shows that this expression gives the difference Θqi − ln(Bx1)
to within 0.7% even for Θ = π/2; of course, the error in qi is much less than that
because B → ∞, so that qi is determined chiefly by the term in ln B.

The heat flow across one wall q = qi + qo without approximation. By substituting
for qi and qo from (4) and (6), we find that for B → ∞ with fixed non-zero Θ ,

Θq = ln (2BΘ2) + 1
18

Θ2
(
1 − 7

150
Θ2

)
− 2 ln

[√
π

Γ (1 + Θ/π)

Γ ( 1
2

+ Θ/π)

]
+ o (1) . (7)

We see that q is independent of the location x1 at which we divide the interval
0 � x < ∞; the dependence on x1 in the equation for qo exactly cancels that in the
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expression for qi because the inner and outer problems (3) and (5) are equally valid
in the region B−1 � x � 1.

2.2. Inner solution for the function q(Θ): B → ∞ with Θ = O(B−1/2)

Because the inner interface is taken as linear to derive (7), the result fails when Θ is
small enough for the linear and quadratic terms to balance in the Taylor expansion of
film thickness about x = 0. That failure occurs when Θx ∼ x2; then x ∼ Θ and the
thickness ∼ Θ2. For the left- and right-hand sides of Newton’s law (2d) to balance,
the Biot number based on that thickness must be of order unity, i.e. Θ2B ∼ 1.

For such small values of Θ , a new analysis of (2) is necessary. We define new inner
variables for the lower contact line in figure 1 by x̌ = x/Θ and y̌ = (1 + y)/Θ2, and
define a new inner limit by B → ∞ (fixed Θ2B, x̌, y̌). In that limit, (2) becomes

∂2T

∂y̌
2

= 0 within D, on y̌ = 0, T = 1; (8a, b)

on y̌ = x̌ + 1
2
x̌2,

∂T

∂y̌
+ Θ2B T = 0. (8c, d)

This problem describes conduction heat flow across a quasi-parallel film to a parabolic
arc on which Newton’s law of cooling applies.

By solving (8), the inner heat flow across the wall between x̌ = 0 and x̌ = x1/Θ is

qi =
2

AΘ
tanh−1 A − 2

x1

+ o (1) , A2 = 1 − 2/(Θ2B). (9a, b)

Equation (9) holds for B → ∞ with Θ2B fixed, but arbitrary; although A is imaginary
for Θ2B < 2, qi remains real by the identity tanh−1 iz = i tan−1 z. The first term in (9)
is large compared with the second, because Θ = O(B−1/2), but x1 and A are fixed.

The outer limit is B → ∞ with x, y and Θ2B fixed. Newton’s law (2d) again
requires the interface to be isothermal, but now Θ = 0 for the outer problem. From
Appendix B, the heat flow across the wall between x1 and infinity to the semicircular
interface

qo =
2

x1

− 4

π
ln 2 + o(1). (10)

The x1-dependence here differs from that in (4), because the outer film thickness now
vanishes quadratically rather than linearly with distance from the contact line. The
second term in (10) is small compared with the first because x1 is small.

The heat flow across one wall q = qi + qo, without approximation. For B → ∞
with Θ2B fixed, qi and qo are given by (9) and (10), so

q =
2

AΘ
tanh−1 A − 4

π
ln 2 + o(1), (11)

and q is again independent of x1. The first term in (11) is large compared with the
second because Θ = O(B−1/2); the large term represents the heat flow across the
parabola osculating with the interface at the contact line, and the smaller second
term corrects for the shape of the outer interface. The correction is negative because
the actual film is thicker than that below the osculating parabolic, as illustrated in
figure 1.
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2.3. Composite expansion giving q(Θ) for Θ � π/2 and B → ∞
Equations (7) and (11) have a common region of validity B−1 � Θ2 � 1. In the first
case, Θ2B 
 1 so A → 1, and (11) reduces to

Θq ∼ ln(2BΘ2) − 4

π
Θ ln 2. (12)

Because (7) also reduces to (12) for Θ2 � 1, the composite expansion is formed by
adding (11) to (7), then subtracting the common part (12).

The heat flow q across one wall is thus given by

Θq =
2

A tanh−1 A + 1
18

Θ2
(
1 − 7

150
Θ2

)
− 2 ln

[√
π

Γ (1 + Θ/π)

Γ
(

1
2

+ Θ/π
)]

+ o(1), (13)

where A is defined by (9). The first term in (13) gives the heat flow for Θ → 0 across
the osculating parabola, i.e. the arc with the same curvature and contact angle at the
contact line as the circular arc interface. The second term is the correction to the inner
heat flow for finite Θ; and the last term is the correction necessary because the
outer interface is not parabolic.

Equation (13) holds for all Θ < π/2 and B → ∞. It is verified by an exact solution
of (2) for Θ = π/2 (see Appendix A). The exact result has the large-B asymptote
(A 6), namely πq/2 = ln(4B/π) + γE + o(1), where Euler’s constant γE = 0.577+. For
Θ = π/2, equation (13) differs only trivially from (A 6), in that the additive constant
is given as 0.573 rather than by its true value γE .

3. Heat flow predicted by the free-boundary problem
The liquid viscosity and density are µ and ρ	, and surface tension is σ . The

disjoining, or resultant van der Waals, force per unit area acting on an interfacial
element is A/Y 3

∗ where Y∗ is the dimensional film thickness and A is the dispersion
constant. As in the conduction model, the pressure in the vapour is taken as uniform.
Using the evaporative heat transfer coefficient h, we define a velocity scale Vs for
liquid flow normal to the interface and a capillary number Ca by

Vs = h�T/(ρ	Q), Ca = µVs/σ. (14a, b)

(This scaling differs from that used in the local analysis in Morris (2001): there, all
scales are based on the difference Tw − T∞ between Tw and the temperature T∞ far
from the wall; here, because the channel has finite thickness, we use the superheat
Tw − To.)

Figure 2 outlines the structure which we shall establish for the contact region on
the lower wall. The solid curve shows the actual interface shape, and broken curves
show the outer limits of the solutions in subregions Ia and Ib. For vanishing capillary
number, Ca → 0, the problem has an inner and outer structure. In the outer region
II in the figure, the interface is a circular arc because the capillary pressure σ/a is
large compared with the characteristic flow pressure µVs/a. The thermal boundary
condition on that circular arc, and the contact angle, are determined by analysing the
contact region I .

In region I , the interface is perturbed by the induced flow, so that the coupled
temperature, pressure and velocity fields are found, together with the interface shape,
by solving a free-boundary problem due to Potash & Wayner (1972) and Moosman &
Homsy (1980). The dimensional form of that problem is given in Morris (2001, p. 6).
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Figure 2. Structure of the free-boundary problem for the contact region on the lower wall in
the double limit Θ2

s → 0, ε → 0. Coordinates x, y are shown in figure 1. For the slope unit
Θs , see (15); the apparent contact angle Θ is proportional to Θs .

To describe its dimensionless form, given as (20) below, we define the scales

Ps = ρ	Q�T/To, Hs = (A/Ps)
1/3, Ls = (σHs/Ps)

1/2, Θs = Hs/Ls. (15a−d)

Below (20), we show that Ps is the pressure difference across the interface of the
uniform wetting film shown on the left-hand side of figure 2, and described in § 1;
also Hs is the thickness of that uniform film; and Ls is the horizontal scale at
which a pressure difference Ps is balanced by surface tension. The contact angle Θ is
proportional to the slope unit Θs .

We let �P be the pressure difference across the interface far from the wall; since
Θ � 1, �P is given in terms of the gap thickness 2a by �P = σ/a. The fol-
lowing parameters appear when the governing equations described above are non-
dimensionalized:

ε = �P/Ps, β = hHs/K, f = 3µL2
sVs

/(
PsH

3
s

)
, (16a−c)

as defined in Morris (2001). By (15c), ε = L2
s /(aHs) is the ratio of the curvature a−1

of the outer interface to the curvature scale Hs/L
2
s within the contact region. Also,

β is the micro scale Biot number defined in § 1. Lastly, f is the ratio to Ps of the
pressure scale µL2

sVs/H
3
s of the induced flow.

From the definitions (16), it follows that

Θs = (3Ca/f )1/4, εΘ2
s = Hs/a, εBΘ2

s = β. (17a−c)

The important identity (17a) shows that the slope unit vanishes with Ca, so that a
small-slope analysis of the contact region is appropriate for Ca → 0 with fixed f and
β . We use (17b) below, and we use (17c) in § 4.

To describe the contact region on the lower wall, we define the dimensionless liquid
pressure P , film thickness Y and x-coordinate by

P = (P∗ − Po)/Ps, Y = (y∗ + a)/Hs, X = x∗/Ls. (18a−c)

In (18b) and throughout our analysis of the free-boundary problem, y denotes
interface location, rather than a coordinate as in § 2; the change is appropriate
because here only the interface location is significant, and use of a similar symbol
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facilitates comparison with the conduction model. By combining (18) with (17b)

X = x/(εΘs), Y = (1 + y)
/(

εΘ2
s

)
. (19a, b)

This relates the new dimensionless variables to those defined in § 2. For X and Y ∼ 1,
(19) implies that x ∼ εΘs and 1 + y ∼ εΘ2

s , as in figure 2.

3.1. Boundary-value problem for region I

We define the inner limit as Θ2
s → 0 with Y fixed. Moosman & Homsy (1980) show

that, with error O(Θ2
s ), in this limit the film thickness Y and liquid pressure P satisfy

d

dX

(
Y 3 dP

dX

)
= f

1 + P

1 + βY
, −P =

d2Y

dX2
+

1

Y 3
; (20a, b)

as X → −∞,
dY

dX
→ 0; as X → ∞, P → −ε. (20c, d)

The domain is −∞ < X < ∞, because there is no contact line for this perfectly
wetting system. (This dimensionless version of the problem differs slightly from that
in Morris (2001) owing to the present choice of To and Po as reference temperature
and pressure.)

We interpret (20). First, the normal stress balance (20b) states that in this creeping
flow, the pressure force on an interfacial element balances the resultant force due to
surface tension and van der Waals forces. Because the interface curves away from
the wall, the gas pressure exceeds the pressure in the liquid, making P < 0. Secondly,
(20a) results by combining a mass balance with an interfacial energy balance, one-
dimensional heat conduction and evaporation kinetics. This balance states that the
liquid flow rate varies along the film owing to the evaporative mass flux expressed by
the right-hand side of the equation. The evaporative mass flux varies inversely with
Y because the heat flux decreases with increasing film thickness, and also depends
on liquid pressure owing to the Kelvin effect, i.e. evaporation is impeded because
the gas pressure exceeds that in the liquid. The fluid motion and the heat flow are
coupled through the pressure field; the inclusion of this coupling distinguishes the
free-boundary problem from the conduction model.

The dimensionless interface temperature is defined by Ti = (Ti∗ − To)/�T , and is
determined as part of the solution of the free-boundary problem. It does not explicitly
enter (20), because it has been eliminated algebraically. By equations (6a) and (6b) of
Morris (2001), Ti is given in terms of the film thickness and liquid pressure by

Ti = (1 − βPY )
/
(1 + βY ). (21)

We can now discuss the qualitative nature of the solution of (20). As X → −∞, the
film thickness becomes uniform by (20c). Equation (20b) then forces P to be constant,
and (20a) imposes the stronger condition P → −1; so Y → 1. Consequently, Ps is the
pressure difference across the equilibrium wetting film, and Hs is the thickness of that
film. Next, as X is increased from −∞, Y increases, and P rises above −1, allowing
liquid to evaporate. Evaporation ceases as X → ∞, because (20d) and (20b) together
require Y ∼ εX2/2; this parabolic growth makes the right-hand side of (20a) vanish
as 1/X2, and so makes the total evaporation from the contact region I integrable at
infinity.

In applications, it is usual that ε � β � 1 and f ∼ 1 (see table 1, and table 1 of
Morris 2001). In the limit ε → 0 (with β , f fixed), region I has additional inner and
outer structure, which we now derive.
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β f b ln δ

0.029 0.23 1.23 2.98
0.014 1.08 1.90 3.39
0.0064 5.00 2.89 3.81

Table 1. Integration constants b and δ obtained by solving the inner problem.
Values of β and f are for the conditions of Schonberg et al. (1995).

3.1.1. Region Ia: inner limit ε → 0 (X, β, f fixed)

The inner problem is the special case of (20) with the outer boundary condition
(20d) replaced by the new boundary condition P → 0 as X → ∞. Then, as shown in
Morris (2001, p. 11), equation (20) admits a solution such that as X → ∞,

dY

dX
= b − f

2βb4

ln X

X
+ O(X−1), Y 3 dP

dX
=

f

βb
ln

(
X

δ

)
+ o(1). (22a, b)

The integration constants b and δ are found by solving the inner problem numerically;
examples are given in table 1. Because dY/dX approaches a limit at the outer edge
of this region, the apparent contact angle is established here; specifically,

Θ = b(3Ca/f )1/4, (22c)

where we have used (17a). As noted in Morris (2001), the contact angle here is a
property of the small-scale flow; unlike the dynamic contact angle of a spreading
isothermal drop, it is independent of large-scale geometry.

The linear growth in film thickness predicted by (22a) causes the heat flux to decay
as 1/X, and as a result, the total evaporation varies as lnX, as stated by (22b). To
treat that unbounded growth, Stephan & Busse (1992), and Schonberg et al. (1995)
use the free-boundary problem to compute only the heat flow across a finite part of
the meniscus where the slope is small. They find the rest by numerically solving an
outer conduction problem in which the detailed shape of the interface is incorporated,
and then patching the two solutions together, in the sense of Van Dyke (1975).

In our matched asymptotic analysis, we incorporate the outer geometry in two steps.
We first show that the effect of interface curvature must be included by approximating
the interface as a parabolic arc with the same contact angle and curvature as the
actual interface at the contact line. Because the interface curves away from the wall,
the heat flux decays faster than X−1, and is integrable at infinity. We then calculate
the small correction required because the outer circular arc interface is not parabolic
for all X.

We now estimate the size of the intermediate region Ib in which the interface is
approximately parabolic. For any ε > 0, the inner solution becomes inconsistent for
large X, because (20d) and (20b) then require Y ∼ εX2/2. For that outer parabolic
interface to match smoothly to the outer limit (22) of the inner solution, bX ∼ εX2.
Consequently, interface curvature is essential where εX ∼ 1, so that Y ∼ ε−1.

We therefore define intermediate variables by

X̌ = εX, Y̌ = εY, P̌ = P/ε. (23a−c)

It is implicit in these definitions that ε > 0, so that the interface curves away from
the wall. By (19), X̌ = x/Θs and Y̌ = (1 + y)/Θ2

s , so that X̌ and Y̌ differ from the
variables x̌ and y̌ of § 2.2 only because the definitions are now based on the known
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slope unit Θs rather than on the parameter Θ . Because X̌ and Y̌ are of unity in this
region, x ∼ Θs and 1 + y ∼ Θ2

s , as illustrated in figure 2.

3.1.2. Region Ib: intermediate limit ε → 0, (X̌, β, f fixed)

By writing (20) in terms of the new variables, without approximation,

d

dX̌

(
Y̌ 3 dP̌

dX̌

)
= εf

1 + εP̌

ε + βY̌
, −P̌ =

d2Y̌

dX̌2
+ ε2/Y̌ 3; (24a, b)

as X̌ → −∞, Y̌ → ε; as X̌ → ∞, P̌ → −1. (24c, d)

From the right-hand side of (24a), we see that for ε → 0 with β fixed (possibly small),
the evaporative mass flux in this region is O(ε).

We seek the solution of (24) in the form of the asymptotic series

Y̌ = Y̌0 + εln ε Y̌1 + ε Y̌2 + o(ε), P̌ = −1 + εln ε P̌ 1 + ε P̌ 2 + o(ε), (25a, b)

where the coefficients Y̌0, P̌ 1, · · · are independent of ε. At leading order in this series,
Y̌ and P̌ are O(1) by the choice of scales. At the next order, the gauge function is
found by matching to the inner solution; for large X, the outer limit (22) of the inner
solution requires P = O(X−2 lnX); consequently, P = O(ε2 ln ε) for X ∼ 1/ε. The
choice of ε ln ε as gauge function in (25) follows because P̌ = P/ε.

We derive matching conditions on the mass flow Y 3dP/dX. By (25)

Y 3 dP

dX
= Y̌ 3

0

{
dP̌ 1

dX̌
ln ε +

dP̌ 2

dX̌

}
+ o(1), (26)

but by (22b), at the outer edge of region I ,

βb

f
Y 3 dP

dX
= − ln ε + ln

(
X̌

δ

)
+ o(1).

The matching conditions obtained from these expressions are

lim
X̌→0

βb

f
Y̌ 3

0

dP̌ 1

dX̌
= −1, lim

X̌→0

{
βb

f
Y̌ 3

0

dP̌ 2

dX̌
− ln X̌

}
= − ln δ. (27a, b)

We obtain differential equations for the coefficients Y̌0, P̌ 1, · · · by substituting the
trial series (25) into the governing equations (24) to show that

d2Y̌0

dX2
= 1,

d

dX̌

(
Y̌ 3

0

dP̌ 1

dX̌

)
= 0,

d

dX̌

(
Y̌ 3

0

dP̌ 2

dX̌

)
= f/(βY̌0). (28a−c)

The domain is 0 < X̌ < ∞, because X̌ → 0 in the inner limit ε → 0 with X fixed.
By (28a), the curvature is constant at leading order because far from the contact

region, the induced flow is weak. The mass flow rate is determined by (28b) and (28c);
it is uniform at leading order, but varies at second order owing to the evaporative
mass flux f/(βY̌0).

We find the mass flow at leading order by integrating (28b), then applying (27a) to
show that

βb

f
Y̌ 3

0

dP̌ 1

dX̌
= −1, (29)

for all X̌. By (26), the corresponding mass flow Y 3dP/dX = −(f/βb) ln ε +O(1). This
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is exactly what would be obtained by substituting X ∼ ε−1 in the outer limit (22b) of
the inner solution; in effect, because the mass flow is uniform in this region to a first
approximation, analysis of the region simply imposes a cutoff scale X ∼ ε−1 allowing
us to estimate the total evaporation from the inner solution (22b).

To evaluate the correction (28c) to the mass flow, we need Y̌o. By integrating (28a),
then matching to the outer limit (22a) of the inner film thickness, we obtain

Y̌0 = bX̃ + 1
2
X̌2. (30)

The interface is thus parabolic in region Ib, with contact angle imposed by region Ia.
The film thickness vanishes at the apparent contact line X̌ = 0 because, as depicted
in figure 2, the inner thickness is small, i.e. O(ε), relative to that in region Ib.

The additional evaporation occurring in region Ib is found by integrating (28c),
then applying (27b) to show that

βb

f
Y̌ 3

0

dP̌ 2

dX̌
= ln 2b − ln δ − ln

(
1 +

2b

X̌

)
. (31)

The term − ln δ comes from the matching condition (27b), and so accounts for
evaporation in the inner region Ia. Other terms in (31) account for evaporation in
region Ib. As X̌ → ∞, (31) approaches a limit because the film thickness grows faster
than X̌ at infinity. The heat flow across the contact region is integrable at infinity, as
claimed above (23).

The heat flow across the film between −∞ and fixed location x1 � 1 is given by
Θq = βbY 3dP/(f dX), as shown in Morris (2001, equation (9)); physically, the heat
flow q is related to the liquid flow rate Y 3dP/dX because all liquid flowing into the
contact region is evaporated, and all heat crossing the wall is absorbed as latent heat
of evaporation. By (26), (29) and (31) the heat flow across the contact region I

qI =
1

Θ
ln

(
2b

εδ

)
− 2

x1

+ · · · . (32)

We have used (19a) in the form X̌1 = x1/Θs , and we have also used the fact that X̌1

is large because x1 is fixed, but Θs → 0.

3.2. Region II : outer semicircular interface

This region is defined by the outer limit Θ2 → 0 with x and y fixed. To solve
the outer conduction problem, we need the interface shape, contact angle, and a
thermal boundary condition on the interface. The interface is a circular arc because
the liquid pressure is uniform far from the contact line in the limit of vanishing
capillary number. Next, the contact angle is zero because the slope is independent of
Ca on the outer meniscus away from the wall, whereas the slope in the film vanishes
with Ca. Lastly, the dimensional interface temperature Ti∗ = To because in terms of
the variables in (23), the interface temperature Ti = ε(1 − βP̌ Y̌ )/(βY̌ + ε), which
approaches ε as Y̌ → ∞, by (24d). For ε → 0, the dimensionless interface temperature
therefore vanishes outside the contact region, so that Ti∗ = To, as claimed above. It
follows that the outer temperature T satisfies the outer problem (3) with Θ = 0;
consequently, the outer heat flow across the wall from x1 to infinity is given by (10).
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Θ 103ε Equation (33) Schonberg/equation (33)

0.484 4.10 2.99 0.90
0.511 4.03 3.01 0.83
0.528 3.99 3.00 0.80

Table 2. Θq for Schonberg’s conditions given in table 1. ε is found using radius
R = a/ cos Θ .

3.3. Total heat flow q across one wall

By adding (32) to (10), the dimensionless heat flow across one wall is given in the
double limit Ca → 0, ε → 0 (with fixed β and f ) by

q =
1

Θ
ln

(
2b

εδ

)
− 4

π
ln 2 + o(1), Θ = (3Ca/f )1/4b, (33a, b)

where (22c) is repeated as (33b). This result holds only if ε > 0, so that the interface
curves away from the wall. The integration constants b(β, f ) and δ(β, f ) are defined
by (22); they are found by solving the inner problem defined in § 3.1.1, and are
therefore independent of large-scale geometry.

Equations (33a) and (33b) are two simultaneous equations giving q = q∗/K�T and
Θ in terms of the parameters Ca, β , ε and f . Of course, (33a) does not imply an
inverse relation between Θ and the dimensional heat flow q∗, because Θ is a function
of �T by (33b), and q∗ is also normalized against �T . We give the correct scaling
relation between q∗ and Θ in § 4.

The first term in (33) represents the heat flow across the contact region extending
from the equilibrium film out to the part of the film that is parabolic on the scale
of the channel thickness. The total heat flow in that contact region increases with
the horizontal scale Ls and varies inversely with film thickness Hs; consequently, the
heat flow varies inversely with Θs (for fixed �T ). In addition, as expressed by the
logarithmic term in (33a), smaller curvatures on the outer interface result in higher
total flows because the heat flow across the contact region is made finite only by the
curvature of the interface away from the wall. (If the curvature of the interface is
taken as zero far from the wall, we return to a local analysis in which the heat flow
grows indefinitely with distance without approaching a limit, as in the inner problem
(22b).) The second term in (33) is the correction accounting for the non-parabolic
shape of the interface in the rest of the channel. That geometrically specific correction
is negligibly small in the double limit Θ → 0, ε → 0.

The heat flow across any evaporating meniscus that curves away from the wall
is therefore given approximately by the first term in (33a). A numerical example
shows this approximation to be accurate in practice. In table 2, we show that for the
conditions of Schonberg et al. (1995), the full equation (33) predicts that Θq � 3.00.
The correction −(4/π) ln 2 in (33b) represents only about 14% of the total heat flow;
that correction is even smaller for the small value of ε in the example of Stephan &
Busse (1992). We conclude that to a good approximation, the heat flow is determined
by the contact region alone, and the correction for the outer meniscus is unnecessary.
This method for calculating the heat flow across the meniscus was first given, without
proof, in Morris & Moreno (1997).
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Figure 3. Heat flow q = q∗/(K�T ) as a function of Θ and B = ha/K . Curves, conduction
model for (i) B = 40, (ii) 500, (iii) 5000: heavy curves, composite expansion (13); light curves,
fixed-Θ expansion (7); broken curves, small-Θ expansion (11); broken lines, small-Θ limit
(35); �, equation (A 5). Symbols, free-boundary problem: �, equation (33); �, Schonberg et al.
(1995).

4. Identity of the models for vanishing micro scale Biot number β

Because the derivation of (33) requires only that ε � β , the result can be used even
if β is also small. Further simplification is then possible, because the inner problem
for region Ia then has itself an inner and outer structure, whose analysis shows that
βbδ → 1 as β → 0. (See equation (20) of Morris (2001), and the lines below it; 	′

there corresponds to δ here.) On substituting for δ in (33), and using (17c) in the form
εBΘ2 = βb2, we find that

q =
1

Θ
ln(2BΘ2) − 4

π
ln 2 + o(1), (34)

which is identical with the prediction (12) of the conduction model for Θ2B → ∞.
(We arrive at the asymptote (12), rather than its parent (11) because in deriving
(33), we assumed for simplicity that ε � β; as a result, Θ2B = βb2/ε is large.) We
conclude that for vanishing β , the dimensionless heat flow q = q∗/K�T is uniquely
determined by the phenomenological variables B and Θ .

To illustrate (34), we use it to give a scaling argument showing how Θ varies
with the dimensional heat flow q∗ across the wall. Because, by (21) of Morris (2001),
Θ ∼ (�T )1/4 to within a factor depending on ln �T , it follows from (34) that
q∗ ∼ Θ3 ln(2Θ2B), where the second term in (34) has been taken as negligible.
Consequently, the contact angle increases with heat flow, as observed experimentally
by Kim (1994).

5. Comparison of predicted heat flows for small non-zero β

Figure 3 shows the comparison of the two models analysed here. As defined
following (2), the dimensionless heat flow from one wall to the interface q = q∗/K�T ,
and the macro scale Biot number B = ha/K . Heavy curves show the solution (13)
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of the conduction model for B → ∞. The figure includes two tests of the numerical
accuracy of that solution. First, for Θ = π/2, the large B-solution (13) agrees to
within 1% with the exact expression (A 5) given in Appendix A. Secondly, the
figure shows the development, with increasing B, of overlap between the small-Θ
expansion (11) and the fixed-Θ expansion (7). Even in case (i), for the smallest
value of B = 40, the curves for (7) and (11) blend quite smoothly at Θ � 0.7, the
discrepancy between those curves and that for the composite expansion (13) being
only about 6%. In case (iii), for the largest value B = 5000, the curve for (7) is
graphically identical with that for (13), and the curves for (7) and (11) overlap for
0 < Θ < 0.6. We conclude that (13) predicts the heat flow accurately even for B as low
as 40.

Open symbols in the figure show the prediction (33) of the nonlinear theory for
the values of β , ε and f given in tables 1 and 2. Those values are for the conditions
of Schonberg et al. (1995). Because the micro scale Biot number β is small in their
examples, the conduction theory and the nonlinear theory should predict the same
heat flow. Points computed from (33) agree closely with the prediction of curve (i)
from the conduction theory for B = 40. That curve corresponds closely to their
examples, for which h = 4.4 MW m−2 K−1, and B = 40.7. (Values of ε in table 2 and
this value of B are based on scales differing by a factor of cosΘ , and therefore satisfy
only approximately the small-Θ relation βb2 = εBΘ2 implied by (17c).) Because our
new results (13) and (33) give the same heat flow to within a few per cent, we conclude
that for these representative values of β , there is indeed negligible heat flow in the
innermost region determining Θ .

The figure also shows the results of Schonberg et al. (1995). They find q by dividing
the meniscus in two, as discussed in § 1. Though their method gives a heat flow whose
accuracy is limited only by the resolution of the numerical scheme, they find Θ from
the slope at the arbitrarily chosen patching point. Because they patch at very small
thicknesses, the contact angle is not fully established and is underestimated; for their
conditions, we compute angles about 20% larger than theirs. To plot their heat flows,
we use their values of q , but our values for Θ given in table 2. When plotted in this
way, their results are in fair agreement with (33).

The behaviour of q near the origin in figure 3 is also interesting. By (13),

lim
Θ→0

q = π
√

B/2; (35)

for small Θ , the heat flow is algebraically large in the large parameter B rather than
merely logarithmically large, as (34) shows to be the case for fixed Θ �= 0. Physically,
small contact angles correspond to larger heat flows, if all else is equal, because the
film remains thin over large horizontal distances. The asymptote (35) is approached
in experiments by Kim (1994). In my analysis of those experiments, I show that in
one case the macro scale Biot number B = 3 300, and the measured contact angle
Θ = 0.014 (Morris 2001, table 2, row 4). For those values, (13) predicts that q = 95,
which is within 25% of the limiting value of 128 given by the asymptote (35). It
is interesting that this dimensionless heat flow is ∼ 25 times that in the example
of Schonberg et al. (1995) shown in figure 3. Of course, in the experiments, the
corresponding dimensional heat flow is only a fraction of a milliwatt, because the
small contact angle results from an extremely small superheat of less than a millikelvin.
However, the example suggests that very large heat flows might be possible if the wall
could be designed to keep Θ small even at larger superheats.
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6. Discussion
In this paper, we use two models to predict the heat flow in a channel. Our main

new results are (13) and (33), which we derive respectively from the conduction model
and the free-boundary problem. We prove that those formulae become identical in
the double limit of vanishing micro scale Biot number β and contact angle. From this
result, it follows that the heat flow across an evaporating, perfectly wetting meniscus
then occurs by pure conduction in a geometry that is established by the apparent
contact angle. Because the conduction model can be derived by self-consistency
arguments, as shown in Morris (2000), the essential function of the free-boundary
model is to provide a relation between Θ and the capillary number of the induced
flow. Lastly, we prove that when Θ is small, the heat flow across any meniscus that
curves away from the wall, like that in a channel, is determined purely by the contact
region. Consequently, we were able to prove that large-scale geometry affects the heat
flow only through the interface curvature at the apparent contact line, so that there
is a universal relation between the heat flow, Θ , interface curvature, superheat and
material properties. This universal relation extends our new results from the channel
to other geometries.

For simplicity, we analyse the free-boundary problem only for the case ε � β; for
that limit, the universal relation is obtained by deleting the second term from (33).
For the conduction model, the corresponding formula for q is

ΘAq = 2 tanh−1 A, A2 = 1 − 2/(Θ2B), (36a, b)

by (13) and (9b). Here B = hR/K , where R is the interface radius of curvature at the
apparent contact line. (A procedure for estimating R from measured film thickness
profiles is given in § § 3 and 10 of Morris 2001; there, (36) is used, without proof,
to analyse experiments by Kim 1994.) Although (36) could be derived by modelling
the evaporating meniscus as a quasi-parallel film bounded by a parabolic interface
on which Newton’s law of cooling holds, we have derived that simple model from a
more generally accepted model, and have provided an estimate of the error made by
using (36).

In addition to providing formulae for the heat flow and contact angle, these analyses
yield the following robust model of the evaporating meniscus of a perfectly wetting
system. Because the microscale Biot number β is small in practice, heat flow occurs
at a scale large compared with that on which the contact angle Θ is established. As a
result, the heat flow is uniquely specified by macroscopic variables, specifically by Θ

and the macro scale Biot number B. Microphysics affects only the relation between
Θ and the capillary number Ca of the induced flow. As shown in Morris (2001, § 8),
for β → 0 the contact angle Θ = Ca1/4fn(B), where the parameter B depends on
a length scale set by microphysics, and vanishes with β . Because limB→0 fn(B) does
not exist, Θ is not uniquely determined by Ca, and microphysics must be included in
formulating the free-boundary problem. However, because fn(B) diverges only weakly
as B → 0, the relation between Θ and Ca is insensitive to the precise way in which
microphysics is incorporated. That insensitivity results because both Ca and β are
small. In the analogous theory of isothermal spreading of a drop, spreading rates are
known to be insensitive to the specific microphysical mechanism invoked to relax the
velocity singularity at the moving contact line. The papers in this series extend that
result to include evaporation.

Insensitivity to microphysical detail is important here, because several premises
of the nonlinear theory can fail at the smallest scales of motion if the superheat
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is sufficiently large. One example, out of several possible, is that the continuum
hypothesis can fail for the vapour because the molecular free path Λ is independent
of superheat, whereas the minimum flow scale decreases with increasing superheat.
(The continuum hypothesis is not at issue at the larger scales where heat flow occurs;
see examples in table 1 of Morris 2000.) The two scales become comparable at
superheats occurring in some applications; in the study by Schonberg et al. (1995),
Λ ∼10 nm, and the superheat �T ∼ 5K corresponds to Ls ∼ 1 nm. Although the
vapour is taken as dynamically passive in the free-boundary problem, the continuum
hypothesis is still required because the treatment of evaporation kinetics assumes the
existence of a well-defined gas pressure. In fact, the failure of the continuum hypothesis
has an additional significance, because by using self-consistency arguments like those
in Morris (2000, § 2.3), it can be shown that the vapour is dynamically passive at the
smallest scales only if the continuum hypothesis holds there. Because many of the
assumptions of the free-boundary model can fail at the smallest scales, it is important
that the small-scale motion affects the contact angle only weakly, and has no direct
effect on the heat flow. This conclusion also holds for partially wetting systems, as we
will show in a paper to follow.

I thank the referees and the associate editor for helpful comments.

Appendix A. Exact solution of (2) for Θ = π/2

Liquid now occupies the strip x > 0, |y| < 1. Let

χ(x, y) = −∂T /∂x + B T . (A 1)

By (2), χ satisfies

∇2χ = 0 within D; on |y| = 1, χ = B; (A 2a, b)

on x = 0, χ = 0. (A 2c)

Problems (2) and (A 2) are equivalent, because it can be shown that if χ satisfies (A 2),
and T is finite at infinity, then the function T obtained by integrating (A 1) satisfies
(2).

By integrating (A 1), and requiring T to be finite at infinity,

T (x, y) = eBx

∫ ∞

x

e−Bξχ(ξ, y) dξ. (A 3)

Though χ is discontinuous at the vertices of the strip, T (0, y) is continuous because
it is obtained by integrating the finite quantity χ along a path of constant y from the
uniform state T = 1 at infinity.

The flow q across one wall is equal to that across half the interface, so q =

B
∫ 1

0
T (0, y) dy. By using (A 3), interchanging the order of integration, then integrating

by parts in ξ ,

q =

∫ ∞

0

e−Bξ

∫ 1

0

∂χ

∂ξ
(ξ, y) dy dξ. (A 4)

By using the solution of (A 2) given in Carslaw & Jaeger (1959, p. 164) to evaluate
the inner integral,

q =
2

π

∫ ∞

0

e−ζ ln coth
( πζ

4B

)
dζ. (A 5)

This result is used in figure 3.
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Figure 4. The conformal mapping used to solve (3).

For B → ∞, the argument of the logarithm in (A 5) can be replaced by 4B/(πζ ),
giving

1
2
πq = ln

(
4B
π

)
+ γE + o (1) ; γE = −

∫ ∞

0

e−x ln x dx (A 6)

is Euler’s constant. This result is used below (13). It can be shown numerically that
q approaches this asymptote to within 5% for B > 2.

Appendix B. Exact solution of (3) by conformal mapping
Figure 4 shows the geometry of the mapping. With z = x + iy, we show that a

function w(z) = u + iv exists such that curve ABCD in the z-plane maps to the line
Im w = 0. In the figure, primed and unprimed letters correspond to points and their
images. To discuss the map, we take the origin for z on the upper wall, at a distance
2 tan Θ to the left of B .

Let the hypergeometric function

F (a, b, c, w) =
Γ (c)

Γ (b)Γ (c − b)

∫ 1

0

tb−1(1 − t)c−b−1(1 − wt)−a dt, (B 1)

as in Abramowitz & Stegun (1970, equation 15.3.1). The parameters a, b and c are
dummies occurring only in (B 1). Also zp = exp(p ln z), where the branch cut for ln z

is along the negative real axis, so −π < arg z � π. F is singly valued in the w-plane
cut along the real axis from 1 to ∞, and is real if a, b, c and w are real with w < 1.

Then, the function

z =
2

√
π sec πα

Γ (1 − α)Γ
(

1
2

+ α
) F

(
1
2
, 1

2
− α, 1 − α, w

)
F

(
1
2
, 1

2
− α, 1, 1 − w

) (B 2)

maps the half plane Imw > 0 onto the domain ABCD in figure 4. The contact angle
Θ = πα.

The claim follows from the properties of the Schwarzian triangle function discussed
by Nehari (1975, p. 207). That function maps the half-plane Imw > 0 onto a
curvilinear triangle whose sides are circular arcs with angles απ, βπ, γ π at the
vertices. To obtain the special case (B 2) of his map, we set γ = 0 to make the walls
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parallel, and then set β = α. However, (B 2) differs from his map in two respects.
To make z our physical coordinate, we have interchanged z and w in his function.
We have also multiplied his function by 2 sec πα to make the gap thickness 2, as in
figure 4. Because his result holds for α + β + γ < 1, (B 2) is valid for α < 1/2, i.e. for
Θ < π/2.

Nehari shows that (B 2) maps the half-plane Imw > 0 onto the domain ABCD, but
does not determine the channel thickness. To prove that the thickness is 2, we show
that C ′D′ maps onto the half-line Im z = −2, Re z > 2 tan Θ . Our claim then follows
because Nehari shows that the interval A′B ′ maps onto Im z = 0, Re z > 2 tan Θ .

B.1. Proof that the channel thickness is 2

We first show that for real w > 1, the function in the numerator of (B 3),

F
(

1
2
, 1

2
− α, 1 − α, w

)
= wα−1/2

{
F

(
1
2
, 1

2
− α, 1 − α,

1

w

)
− i

√
π

Γ (1 − α)

Γ
(

1
2

− α
)F

(
1
2
, 1

2
− α, 1, 1 − 1

w

)}
. (B 3)

For real w > 1, this gives the real and imaginary parts of the left-hand side because
the functions on the right-hand side are then real-valued, by the remark above (B 2).

To prove (B 3), we note that the integrand defining the function on the left-hand
side is real if 0 < t < 1/w, but imaginary if 1/w < t < 1. The contribution of these
subintervals to the integral can be expressed in terms of hypergeometric functions by
substituting τ = wt for 0 < t < 1/w, and τ ′ = (wt − 1)/(w − 1) for 1/w < t < 1. So

F
(

1
2
, 1

2
− α, 1 − α, w

)
= wα

{
w−1/2F

(
1
2
, 1

2
− α, 1 − α, 1/w

)
− i

√
π

Γ (1 − α)

Γ
(

1
2

− α
)F

(
1
2

+ α, 1
2
, 1, 1 − w

)}
. (B 4)

Equation (B 3) follows on using identity (15.3.5) of Abramowitz & Stegun to express
the last term in (B 4) in terms of a hypergeometric function with argument 1 − 1/w.

To complete the proof that for real w > 1, Imz = −2, we write the denominator of
(B 2) in terms of a hypergeometric function with argument 1 − 1/w, i.e. the same as
that of the imaginary part of (B 3). By using identity (15.3.3), then identity (15.3.4) of
Abramowitz & Stegun, the function in the denominator of (B 2)

F
(

1
2
, 1

2
− α, 1, 1 − w

)
= wα−1/2F

(
1
2
, 1

2
− α, 1, 1 − 1/w

)
. (B 5)

By (B 3) and (B 5),

z =
2

√
π sec πα

Γ (1 − α)Γ
(

1
2

+ α
) F

(
1
2
, 1

2
− α, 1 − α, 1/w

)
F

(
1
2
, 1

2
− α, 1, 1 − 1/w

) − 2i. (B 6)

It follows that Im z = −2 for real w > 1, because the first term on the right-hand
side is then real by the remark above (B 2). The channel thickness is therefore 2, as
claimed.

It remains to show that points C ′ and C correspond, i.e. as w → ∞, z → 2(tan Θ − i).
That follows from (B 6) since F (1/2, 1/2−α, 1−α, 0) = 1, and F (1/2, 1/2−α, 1, 1) =
Γ (α)/(

√
πΓ (1/2 + α)), by equation (15.1.20) of Abramowitz & Stegun. The claim

follows on using the reflection formula for Γ (z).
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B.2. Behaviour of the map near the contact line

This behaviour is needed to find the heat flow. It differs according to whether the
film thickness vanishes linearly or quadratically with distance near the contact line,
i.e. according as α > 0, or α = 0. In either case, as w → 0 the numerator of (B 2) is
proportional to

F
(

1
2
, 1

2
− α, 1 − α, w

)
= 1 + O(w),

but the behaviour of the denominator changes.

B.2.1. Case 0 < α < 1/2

In this case, as w → 0, the function in the denominator

√
πF

(
1
2
, 1

2
− α, 1, 1 − w

)
=

Γ (α)

Γ
(

1
2

+ α
) +

Γ (−α)

Γ
(

1
2

− α
)wα + O(w),

by identity (15.3.6) of Abramowitz & Stegun.
By combining the asymptotes for F , then using the binomial theorem, and the

reflection formula for Γ (z), we find that as w → 0 with 0 < α < 1/2,

z − 2 tan πα = C(α)wα + O(w), C(α) = 2α

[
Γ

(
1
2

+ α
)

Γ (1 + α)

]2

. (B 7)

So, as shown in figure 4(a), the contact line at w = 0 is located at z = 2 tan πα in the
z-plane. Further, since (z − 2 tan πα)/wα → C as w → 0, the sector subtending angle
Θ = πα at the contact line in the z-plane maps into a half plane.

In the rest of this Appendix, we return to the notation in the text, where x is
measured from the contact line, as shown in figure 1. By (B 7), on the axis Im w = 0,
the corresponding distance from the contact line in the z-plane

x = C(α)uα + O(u). (B 8)

B.2.2. Case α = 0

The denominator of (B 2) is now proportional to

πF
(

1
2
, 1

2
, 1, 1 − w

)
= ln(16/w) + O(w lnw),

by Abramowitz & Stegun (1970, equation 15.3.10). So, as w → 0,

z =
2π

ln(16/w)
+ O(w lnw). (B 9)

This is the counterpart for α = 0 of (B 7). In particular, w = 0 corresponds to z = 0.
Also, by letting w = reiπ in (B 9) and expanding for r → 0, we find that the negative
Rew-axis near the origin corresponds to the parabola y = −x2/2 near B .

On the positive z-axis near the origin, (B 9) requires

ln u ∼ −2π/x + 4 ln 2. (B 10)

As stated above (B 8), x is now measured from the contact line as in figure 1.

B.3. Heat flow defined by the outer problem (3)

In the image plane, T satisfies ∂2T /∂u2 + ∂2T/∂v2 = 0 for Im w > 0. The boundary
conditions are that on the positive u-axis, T = 1 while on the negative u-axis, T = 0.
The solution of that boundary-value problem is T = 1 − φ/π, where φ is the angle
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P ′B ′C ′ in figure 4(b); i.e.

T = Im

{
i − 1

π
lnw

}
. (B 11)

As stated below (B 1), the branch cut for ln w is such that −π < arg w � π.
We find the heat flow qo across the interval x1 < x < ∞ on one wall, where x1

is a small fixed positive number. In Carslaw & Jaeger (p. 449), it is shown that the
total heat flow across the isotherm I1I2 is |S1 − S2| where S is the harmonic conjugate
of T , namely the real-valued function such that S + iT is analytic in z. By (B 11),
S = −(1/π) ln |w|, so the heat flow across the interval u1 < u < 1 corresponding to
x1 < x < ∞ is

qo = − 1

π
ln u1, u1 = w(x1). (B 12)

To calculate qo, only the behaviour of the map near the contact line B is needed.
By combining (B 8), (B 10) and (B 12), we find that with error o(1) for x1 � 1,

Θqo = − ln
x1

2Θ
− 2 ln

[√
π

Γ (1 + Θ/π)

Γ
(

1
2

+ Θ/π
)]

, for 0 < Θ < π/2; (B 13a)

whereas

qo =
2

x1

− 4

π
ln 2, for Θ = 0. (B 13b)

Equation (B 13a) is restated as (4), and (B 13b) as (10).
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